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ABSTRACT

If F is a contractive mapping, then under certain condi-
tions the sequence xn+l = Fxn tends to the unique fixed-point
of F. Because of rounding or discretization error in the
numerical evaluation of F, an approximate sequence {yn} is
~in general produced in place of the exact sequence {xn}. In
this paper we combine results of Ehrmann, Ostrowski, Schmidt
and Urabe, which deal with the behavior of the approximate
sequence {yn}, into a unified setting and give extensions of
some of their results. The discussion is set in terms of
spaces metricized by elements of a partially-ordered topological

linear space.
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On a Class of Approximate Iterative Processes

1)

James M, Ortega and Werner C. Rheinboldt

1. Introduction

The problem of approximating a solution of the fixed-
point equation x = Fx is closely connected with the iterative
process xn+l = Fxn, n=0,1,... . Because of rounding or dis-
cretization error in the evaluation of F, an approximate se-
quence {yn} is in general produced in place of the exact se-
guence {xn} and, in a variety of settings, the effect of this
error has been investigated in recent years by several authors
(see, e.g., Ehrmann [4], Gardner [5], Ostrowski [10], Schmidt
[14], urabe [18], [19], warga [22] and Zincenko [23]).

Urabe [18] studies iterations of the form y Fy

ntl  “o'n

where Fo is "close" to F and where the deviation of Fo from
F is assumed to be caused by rounding error. Ostrowski assumes
that the sequence Y, has the property that Y41 differs from
Fyn by a quantity Eh which tends to zero. Ehrmann considers

iterations of the form y = Fnyn where, for example, the Fn

n+l

1) This work was supported in part by NASA grant NsG-398
to the Computer Science Center and in part by NSF grant
PIVRO6 to the Institute for Fluid Dynamics and Applied

Mathematics at the University of Maryland.



may be the first n terms of a power series expansion for F.
Schmidt and Warga assume that the y, are themselves fixed-points
of such operators Fn; i.e. that Y, = Fnyn. In the present work
we combine these somewhat disparate results into a unified
setting which exhibits the basic underlying principles. This
in turn permits some extensions of the previous results.

Our discussion is set in terms of spaces which are metri-
cized by elements of a partially-ordered topological linear
space N. This is a natural extension of investigations ini-
tiated by Kantorovich (see, e.g. [6], [7]) and is essentially
the same setting used by Ehrmann and Schmidt.

In Section 2 we collect some basic definitions and pre-
liminary results. In Sections 3 and 4 we give several conver-
genée theorems and relate these to some of the results mentioned
previously. For simplicity, we assume in these sections that
N = Rm, or in other words that the spaces are metricized by
elements of the real m-dimensional Euclidean space. Finally

in Section 5 we show how the results extend to more general

spaces.

2. Preliminaries and Lemmas

Let N be a real linear space and C a convex cone with

vertex zero; i.e. tCcC for all tz0, C+CcC and CnN-C = 0. Then



the relation "x=y if and only if y-x€C" introduces a partial
ordering in N which is compatible with the linear structure.
If, in addition, N is a topological linear space with a locally-
convex topology T under which C is closed, then we call N a

partially ordered topological linear space (PTL space) with

respect to C and T.

Definition l: Let X be any nonempty set and N a PTL space.

Then a mapping p from XxX into N such that (i) p(x,y) = 0 if
and only if x=y for all x,ye€X and (ii) p(x,y)=p(x,2) + p(y.z)

for all x,y,z€X is called an N-metric, and X is said to be an

2)

N-metric space. If X is itself a linear space then the N-
metric p is called invariant if p(x,y) = p(x-y,0) for all x,y€X.

Clearly, the two properties of an N-metric imply that
p(x,y)z0 and p(y,x) = p(x,y). Note also that for invariant p

we have
(2.1) p{xtw,y+z) = p(x,y) + p(w,z) for all x,y,w,z€X

In order to deduce most of the desirable properties about

2)These spaces are sometimes also called pseudometric
spaces; see e.g., Collatz [3], although in his case the

convergence of elements in N is not defined by a topology.



monotonic convergence in N, such as the existence of the
limit of a bounded monotone seguence, it is necessary to make
additional assumptions about the space N. To avoid burdening
the discussion with these topological guestions we restrict

m

ourselves at first to the case N= R , i.e. to R -metric spaces,

and postpone the extension of our results to general N-metric

spaces until Section 5. Here R" denotes the real m-dimensional

coordinate space with the usual componentwise partial-ordering.

Clearly R" is a PTL space under any norm topology and if |.l||
denotes an arbitrary norm then the sets {xeX| | plx,x) | < =x,
r real} form a local neighborhood base at X for a Hausdorff
topology on X. Under this topology a sequence {xn}ex converges
to xX€X if and only if p(xn,x) - 0 as n ~ », We call X a complete
R-metric space if every Cauchy sequence on X has a limit point
in X.

R"-metric spaces play an important role in applications.
Some simple examples are the'following:

1) On X = R%

p (xly) = (‘Xl‘yl‘:oo-: ‘Xm-Ym‘ ) I

Where X = (Xl,o-n'xm)' Y = (Y1l"‘lym);

. . . m .
is an invariant R -metric.



2) Let X be the space of continuous functions on [0,1]

and 0 = tl<t2<...<tm+l = 1. Then p(x,y) = (rl,...,rm),
where
r, = sup | x(t)—y(t)| , k=1,...,m,
t, Et=t
k k+1

. . . m .
i1s an invariant R -metric on X.

3) On the space X of (m-l)-times continuously differentiable

functions on [0,1], p(x,y) = (rl,...,rm), where
r = sup | x(k)&j - y(k&t) | k =0,1,...,m-1,
k+1
o=t=1l

. . . m .
is an invariant R -metric.

s e . m m . . .
Definition 2: A linear operator P:R - R is nonnegative if




v

k
P a converges
0

Pa z 0 whenever a 0. P is convergent if

vaﬂe

for all aéRm.

Note that P is convergent if and only if its spectral
radius is less than unity. If P is convergent then

-1 v Lk m . . . -1
(I-P)a™ = E;P a,a€R ; this shows in particular that (I-P)

k=0

is nonnegative if P is nonnegative. The converse also holds
(Varga [21, p. 83]):
Lemma 1. Let P:R" — R© be a nonnegative linear operator and

-1 . X . .
suppose (I-P) exists and is nonnegative. Then P is conver-

gent.

The next lemma reduces for m = 1 to a special case of the
well-known Toeplitz lemma [17].

Lemma 2. Let P:R" - R" be convergent and set

0,1,... .

o
I

k=0
Then a - 0 if and only if bn - 0.

1
Proof: Since P is convergent, lim sup ||Pnﬂ'ﬁ <1 in any norm

<
and therefore EﬂlPkl < o,

k=0
F .
Y om no N |
ha s Y 12", 1+ ) 2" |
k=0 k=no+l

it then follows that a —>o if bk—+ 0. Conversely, since




a =Pa +b a impli .
n+tl on “n+1’ 3p—* © tWpiles bn_—' °

Definition 3: Let X be an Rm-metric space and P:Rm——. Rm a

nonnegative convergent linear operator. Then a mapping

F:Dc X - X is called a P-contraction on D if

g(Fx,Fy) < Pp(x,y), x,y €D

A general theorem of Schrdder [16] assures the validity
of the contraction principle: If F:X-— X is a P-contraction
on a complete Rm-metric space X, then F has a unique fixed-

point x*=Fx* in X and the sequence x =Fxn,n = 0,1,... con-

n+l
verges to x* for any xo.

We shall be interested in approximate P-contractions that
are defined only on a subdomain of X. The following lemma

generalizes a result of Collatz (see [3]).

. m m
Lemma 3: Let X be an Rm—metrlc space and P:R— R a non-

negative convergent linear operator. Suppose that F:D c X - X

satisfies
((Fx,Fy) £ P<(x,y) +%¥, x,vy €D
for some fixed ¥ e R" and that there exist Yy «Y, €D such that
-1 }
= £ = (I- , b4
(2.3) S_{x ‘ f(x,yl) 7__(1 P) [P((yl yo) + +8] cD

where g),((F% ,yl). Then FS C S.



_8—

Proof: If x € S, then

c(Fx,yl) < ((FX.FYO) + f(Fyo.yl) £ PC(X'yo) +Y + &

£ Pe(x,y;) + [Pely) .y ) + Y+§]¢ By + (I-P)y =7.

3. Approximate Iterations
The following theorem, which generalizes a result of

Ostrowski [10], will be basic to the subsequent discussion.

Theorem 1l: Let X be a complete Rm-metric, F:DcX —» X a P-con-
traction on D and ScD a closed subset with the property that
FS © S. (Hence, by the contraction principle the sequence
xn+l = Fxn, n=20,1,..., starting from any xo € S converges
to the unique fixed-point x* of F in S.) Let Y o ¥yree- be

an arbitrary sequence in D and set En = ((Fyn'yn+l)' n=20,1,... .

Then the following estimates hold:

(3.1) oy .., x*) 2 (I-P) T [Ppely ..y ) + £1,
C*¥n+1 C'Yn+1'?n

n

and

ek, el

n- n
<

(3.2) €(Yn+1' x*) £ ((xn+l.x*) + ) P €k + P C(xo.yo).

=0
Moreover,
(3.3) yn—;x* if and only if E'n-—, 0, n—e=,

Proof: The estimate (3.1l) follows from

€(yn+l,x*) < C(Yn+l'Fyn) * C(Fyn'Fynﬂ) * f(Fyn+l'Fx*)

£ £-n + Pc(yn'ynﬂ) + 1:'C(yn+l’x*)



and the nonnegativity of (I-P)—l while (3.2) is obtained from

f(xn+l'yn+l) £ C(Fxn'Fyn) *+ Q(Fyn'yn+l)
n
< Polx, ¥y) + £ £ ... ) pn‘kgk + Pn+l€ (x_.¥,)
k=0

together with C(yn+l’x*) & c(yn+l' ) + ((Xn+l'x*) .

n+l
If fn—’ 0 then the convergence of Yn to x* follows directly

from (3.2) and Lemma 2. Conversely, if Y, — x* then

0 £ En - C(Fyn'yn+l) & e(Fyn,Fx*) * C(x*'yn+l)
< P((yn.X*) + ely 1 %%)
and En—->0.

Note that no assumptions were made about the sequence
{ yng except that {yn}cD. In particular, the y do not need
to lie in S nor do the 5;1 need to be small. For the estimates
to be useful, we shall of course interpret the sequence {yng
as an approximation to the exact sequence { xng. In the special
case x_ =y , i.e., £;l = 0, the estimate (3.1) reduces to

n n
that of the contraction principle. Finally, note that (3.1)
and (3.2) play different roles: (3.2) relates the exact se-
guence {xn} to the. sequence { ynz and is useful for such
theoretical purposes as proving (3.3). On the other hand,
(3.1) is a computable estimate which may be used, for example,

to terminate a computation.
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The approximate sequence {ynz may be generated in a
variety of ways. A rather general process, considered by

Ehrmann [ 4], is

(3.4) =Fy, n=0,1,...

Yn+l n'n
where Fn:DcX -»X. A simple consequence of Theorem 1 in this

setting is:

Corollary 1.1: Let F:X—X be a P-contraction on all of X

and suppose the mappings Fn:X-—fX, n=20,1,..., satisfy
(3.5) C(an,Fx)-a~O, uniformly for x € X.

Then if {ynz is generated by (3.4) we have y -»x*, where x*

is the unique fixed-point of F in X.

The proof is immediate since (3.5) implies that
Eh = cﬂFnyn,Fyn)—a-O. Note that (3.5) cannot in general be

weakened to pointwise convergence as the following simple

example shows: X =R, m=1, F = O, Fx= ni]_ e®.

Another corollary strengthens a result of Schmidt [ 14,
Theorem 3]. The proof follows from Lemma 3, the contraction

principle and Theorem 1.

Corollary 1.2: Let F:DcX —X be a P~contraction on D and

suppose Fn:DcX-—bD, n=20,1,..., map D into itself. Assume
that for some y_€ D, (2.3) holds with y, = F y_. S e (Fy .F y.)

and Y= 0. Then F has a unique fixed-point x* € S and for
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the sequence {yn} generated by (3.4), (3.1) and (3.3) hold.
Schmidt did not assume that the Fn map D into itself and .

instead required that (2.3) hold with y = 0 and 6 = 2p(yn+l,Fyn),

n=20,1,... . However, this is an incorrect assumption since

6§ cannot be known until it is assured that the sequence {y,}

exists. But this is just one of the reasons for a condition

like (2.3).

With more stringent conditions on the Fn stronger results

may be obtained. A natural requirement is that the Fn them-

selves be P-contractions, as assumed by Ehrmann, or approximate

)
L P-contractions.

Theorem 2: Let X be a complete Rm—metric space and F:DcX - X
| a P-contraction on D. Let the operators F _:D°X - X, n = 0,1,...

| satisfy
| (3.6) p(an.Fny) s Pp(x,y) + 2y, X,y €D

for some fixed y € Rm, and suppose there exists a Yo € D for

which

-1
(3.7) s = {x | p(x,Foyo) = (1I-P) [Pp(Foyo,yo) + 2y + 81}cD
where
(3.8) 5 = p(Fnyo.Foyo). n=20,1,...,
and

(3.9) 2y + 6 = p(Fyo,FOyo).
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Then

a) the sequences y = Fxn, n=20,1,...,

n+l - Fp¥nr *pn

(xo = yo) are well-defined, xn - x*, where x* is the unique
fixed point of F in S, and the error estimates (3.l1) and
(3.2) hold with en = P(Fnyn,Fyn).

Moreover, if v = 0, each Fn has a unigue fixed point Zn in S

and the following four statements are equivalent:

b) Y, ~ x*, c) 2 - X*,

d) en - 0, e) p(an*,FX*) - 0.

Proof: Using (3.9), it follows from Lemma 3 that FS € S and
the contraction principle assures the existence of x* and the
convergence of x to x*. Similarly, using (3.8), Lemma 3
applied to each of the Fn shows that FnS C S and hence the
sequence y_ is well-defined. The error estimates of Theorem 1
now apply.

If v = 0, then each Fn is itself a P-contraction and since
FnS C S there exist unique zn € S such that z = F z ,

nn

n=20,1,... . Now
* )= * * *)= *) + * Fx*)s...
p(yn+l.x )—p(Fnyn,th ) + p(FnX Fx*) Pp(yn.x ) p(FnX Fx*)

- +
P o (e xn) + By Lxn)

O

HA

ftvﬂs

so that by Lemma 2, (e) implies (b). From

*) = *) + *, + F L Fx*
plz_,x*) = p(F 2z ,F x*) + p(F x Fy ) +elFy, )
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we Obtain

1A

i X*) ]

(1-p)7% [Po(x*,y ) + oy

*
p(zn.x )
so that (b) implies (c¢). Next

* x*) < * + *) = * *
p(an X*) = p(an ,Fnzn) p(Fnzn,Fx ) Pp (x ,zn) + p(zn,x )

and {c) implies (e). Finally, (b) and (d) are eguivalent by

Theorem 1 and the proof is complete.

Theorem 2 contains as corollaries several known results.

The following generalizes a theorem of Urabe [18].

Corollary 2.1: Let F be as in Theorem 2 and suppose the mappings

F =F,n=20,1,... where FO:D c X - X is such that
p(Fox,Fx) £ vy, X € D. Assume that (3.7) holds with & = 0.

Then (a) of Theorem 2 is valid.

We note that here the estimates (3.1) and (3.2) imply

iIA

-1
p (Y 4qo¥*) = (I-P) © [oly v ;) +v],
and

-1
P(Yn+l:x*) = p(xn+l'x*) + (I—P) Y

¢_. The proof of Corollary 1l is im-

since y = p(Foyn.Fyn) n

mediate by noting that (3.6) follows from

p(Fox,Foy) = p(FoX,FX) + p(Fx,Fy) + p(Fy,Foy)

while (3.8) and (3.9) are automatically satisfied.
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Next we consider the main result of Ehrmann [ 4] which, in

m . . .
the case of R -metric spaces, is given by the following

Corollary 2.2: Let X be a complete Rm-metric space and

Fn:D c X » X given P-contractions on D such that F:D c X - X,
(3.5) holds. Suppose there is Y, € D such that (3.7) is true
with vy = 0 and § satisfying (3.8). Then (a) and (b) of Theorem 2

are valid.
Proof: From

p (Fx,Fy) = p(Fx,an) + p(an,Fny) + p(Fny,Fy),

together with (3.5), it follows that F itself is a P-contraction

on D. Similarly, from
= +
P (FYO.FOYO) P (Fyo.Fnyo) p(F y .F y.)
the validity of (3.9) is obtained. Hence all the conditions

of Theorem 2 are satisfied. In particular, (b) follows from

(d) since € 0 by (3.5).

We note that the uniform convergence in (3.5) is required
only to guarantee that €, 0 and the equivalence of (b) and

(e) in Theorem 2 yields a stronger result.

Corollary 2.3: The conclusions of Corollary 2.2 remain valid

if (3.5) holds only pointwise.
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4. Implicit Iterations

In Theorem 2, we considered not only the sequence
Yo+l = Fnyn but also the sequence zn = Fnzn of fixed-points
of Fn' Implicit iterations of this kind have been considered
in some detail by Warga [22] and, more recently, by Schmidt
[14]. The following theorem combines and strengthens, for
Rm—metric spaces, Schmidt's Theorems 1 and 2. We do not assume

the existence of a fixed-point (Schmidt's Theorem 1) nor do

we assume that p(Fn+lyn,Fyn) = 0 (Schmidt's Theorem 2).

. . . m .
Theorem 3: Let X be a linear space which is a complete R -metric

. . m .
space under some invariant R -metric and let F:D ¢ X - X.
Suppose that Fn:D cX-X,n=20,1,... are Q-contractions on
D which possess (unique) fixed-points Y, € D and have the

property that for all n z O
(4.1) p (Fx-F_x, Fy—Fny) = Rp(x,y) , =X,y €D,

. . . -1_ .
where R is a nonnegative linear operator and P = (I-Q) "R is

convergent. Assume further that Yo and Yy have the property that

il

= (x| plxy)) == (I-0)" [P oly,,y;) + (1-0) "6 1} = D

where 60 z p(Flyo,Fyo). Then F has a unique fixed-point x* € D
and the following error estimate holds with 6n = p(Fn+lyn,Fyn),

n=1,2,...:

1A

(4.2)  plxry_ ) = ()TN IR ply v + (3-8 0
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Moreover, the following four statements are equivalent:
(a) €, = p(yn+l.Fyn) -0 (b) 8~ 0

- * * * -
(c) y, ~ ¥ (4) p(an ,Fx*) - 0

Proof: By (2.1) and (4.1) we have for all x, y € D

HIA

p(Fx, Fy) = p(Fx-an, Fy-Fny) + p(an, Fny) (Q+R) p(x,y).

With T = Q + R, I-T = (I-Q)(I-P) and since P and Q are conver-
gent and nonnegative,

-1 -1 =1
(4.3) (I-T) = (1-P) (I-Q)

exists and is nonnegative. Therefore Lemma 1 shows that T is
convergent and hence F is a T-contraction on D.
Now let S' = {x | p(x,Fyl) = (I-T)-lT p(Fyl,yl)}. Then

for.x € s',

HA

p(xlyl) p(x:Fyl) + p(Fyl'yl)

A

(1-1) 71T p(Fy .y;) + p(By,.v)) = (I-D)70 o (By .y;)

HA

(I—T)-l [p(Fyl-Flyl.Fyo-Flyo) + (Fyo.Flyo)]

1A

(1-1) " [Rp (v, ¥ ) +6,] = (1-P) 'TPp (v, .y ) +(1-0) Vs ]

That is, S' c S. Bﬁt then, by Lemma 3, FS' ¢ S' and, by the
contraction principle, F has a fixed point x* € S'.
The equivalence of (a) and (c) follows directly from

Theorem 1. Using this equivalence and

n



_17_

6 = P(Fn+lyn' Fn+l'yn+l) + p(Yn+l'Fyn) = Qp(Yn'yn+l) Te

n n

we see that (c¢) implies (b). Now
* =< * -— -
(4.4) (¥ 4q-%X*) = o (F ¥V 50 FpgX*) + o (Fy -F v . Fx* F_o41%X%)

+ p(Fy F_,¥ ) = Qoly, ,.x*) + Roly ,x*) + &,

or

Pp(y_.x*) + (I—Q)_la

1A

P (Yn+llx*)

n n
& nx 1 +1

< = - - - n

=...= Z‘P (I-Q) 5 + P p(yo.x*)
k=0

which by Lemma 2 shows that (b) implies (c¢). Finally the equiva-
lence of (c¢) and (d) is proved as in Theorem 2. The error

estimate follows directly from (4.4) together with (4.3) since

* =
plx*,y 1) = Qly 5. X*) + Roly . x*) + 8,

= + ,X*) + ’
(QR) p(y 4% ) + Roly 0¥ ) + 6
or

oly . .x*) = (I-1) " [Roly_,,.¥.) + 6]

n+l’ - n+l'*n n°
This completes the proof.
The condition (4.1) on the difference operator Fn - F can

be replaced by a stronger condition on F itself. Assume that
instead of (4.1l) we require that F is an Ro-contraction and

P = (I—Q)_l(Ro+Q) is convergent. Then

p (Fx-F_x, Fy-F y) = p(Fx, Fy) + o(F X, Fny) = (R_1Q) p(x,y)
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so that with R = Ro + Q, (4.1) is satisfied. This represents
an extension of the result of wWarga [22].
In a somewhat different way we can again remove the condi-

tion (4.1) and also the requirement of an invariant metric; in

addition, the following theorem appears to be more suitable

for applications.

m .
Theorem 4: Let X be a complete R -metric space and F:D c X - X,

Fn:DxD c XxX - X (n=1,2,...) given operators such that

HA

(4.5) p(Fn(X.Z).Fn(y.Z)) Qp(x,v), x,y.z € D,

1A

(4.6) p(Fn(Z.x).Fn(Z.y)) Rp(x,y), x,y.z € D,

where Q is nonnegative and convergent, R is nonnegative and
.
P = (I-Q) "R is convergent. Let 6n(x) = p(Fn(x,x), Fx), x € D,

and assume that

(4.7) lim bn(x) = 0, pointwise for x € D.

n—«
Suppose further that there exists a Yo € D such that the equa-

tion y = Fl(y,yo) has a solution Yy € D and

1A

n
i

(x | plx.yy) = (1-2) 1 [Poly,.y,) + (1-0) 61} € D

where 6 = Bn(yl) (n.= 1,2,...). Then the equations
y = Fn(y, yn—l) (n = 1,2,...) have unique solutions Y in 8

and Y, ~ x* where x* € S is the unique fixed-point of F in D.




Proof: For x, vy € D and n £ 1 we have

fIA

p(Fx,Fy) = p(Fx,F_(x,x)) + p(F (x,x), F_(x,y)) + o(F_(x,v), Fn(y.y))

+

p(Fn(yly). Fy) = (Q+R) p(x,y) + 6n(x) + 8 (y)

and, by (4.7), p(Fx, Fy) = Tp(x,y) where T = Q+R. Hence it
follows as in Theorem 3 that F is a T-contraction on D.
Let ' = {x \ p(x,Fyl) = (I—T)—lTp(Fyl,yl)}. Then S' € S

since for x € S' an argument similar to that in Theorem 3 shows

ilA

-1
p(x,y,) (I-T) [p(Fyl. Fi(yyvy)) + p(F (v 0yy), Fily;ey )]

1

iA

(1-1) "MRo (y .y ) + 5, (v)] = (1-B) e (v, .y ) + (1-0) 6],

Thus, by Lemma 3, FS' ¢ S' and F has a fixed-point x* € S'.
-1 -
Next let s" = {x | p(x,yl) = (I-Q) p(Fn(yl,y), yl)} for
some fixed n and arbitrary fixed Yy € S. Then with

s,

-1 -
n = (I-P) [Pp(yl,yo) + (1-Q)
which implies

-1
(I-Q) 6 = n.,

Pn + Pply;.y ) =

we have

(1-0)"" o (F_(y,.¥). ¥;) = (-0 p(F_(y,.¥). F_(y;.7.))

IIA

(1-0) 'Ro (F.y,) = Blo(F.yy) + ply .y,)]

1A

Pn + Pp(yl.yo) =1,

so that S" € S. Hence, by Lemma 3, Fn(', §) maps S' into itself
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and therefore the Y, exist and are unique in D.

Finally,

* =
ply . x*) = o(F (y .y ), F (x*, y__,)) + p(F (x*, y 1), F_(x*,x*))

+ p(Fn(X*. x*), Fx*)

A |

Qp(y . x*) + Rply_ _,,x*) + 8 (x*)
or

oy, X*) = Poly_ 1 ,x%) + (1-0)716_(x*)

which by Lemma 2 and (4.7) assures that Y, ~ x*, This completes

the proof.

We note that if the operators Fn do not depend on the
first variable,i.e., if Fn(x,y) = Fny, then we are considering
the explicit process Yo +1 = Fnyn. Here Q = 0, P = R and
Theorem 4 reduces essentially to Corollary 3 of Theorem 2
although the two constants & are defined in slightly different
ways.

Similarly,if the F_ do not depend on the second variable,
Theorem 4 gives a convergence result for the implicit process
n=20,1,... .

Yn © Fnyn'

As an example of the application of Theorem 4 let X = Rm

and let

Fx = (fi(xl,...,xm) | i=1,...,m) =0

be a nonlinear system of equations. Set
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Fn(x:Y) FO(XaY) (fi(xl,---,xi, Yi+l,-..,ym) | i= l,...,m)

Then Fo(x,x) = F(x) and we have the implicit Gauss-séidel process
studied by Bers [1l] and Schechter [13]:

x$k+l) = £, (x (kfl)...' !kfl) (k) (k)

i 1 (xq i 417Xy ) (3 =1,....m)

Conditions (4.5) and (4.6):

- = -
LN G RRTRTEOTL I PRTTL M Bk ML SRRTES FPLIVCRRLTL L qijlxj yjl

1

I~k

J

- and

m

- Y -
\fi(zl,...,zi,xi+l,...,xm) fi(zl,...,zi,yi+l,...,ym)\_ ). rij]xj yj\

j=i+l

are then satisfied if for the triangular matrices Q = (qij) and
R = (rij) we havg q; < 1, i=1,...,m and (I—Q)—lR is conver-
gent. This latter condition is satisfied if Q+R is convergent.

" Other examples are provided by linear decompositions of F.
Let X be a linear Rm—metric space and let F, Gn’ Hh be nonlinear

operators on X such that Fx = an + an, n=20,1,... . Then

if we define Fn(x,y) = GnX'+ th we obtain the process
= + ’ = lll"' .
Yn+1 Gnyn+l Hnyn n 0

Theorem 4 then requires that all Gn are Q-contractions and
p(an, Hny) = Rp(x,y), n =0,1,... with a nonnegative linear

-1 .
R such that (I-Q) R is convergent.
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5. Extension to N-metric spaces

In order to extend the results of the previous sections
to more general N-metric spaces it is necessary to place addi-
tional conditions on the PTL space N. For details about the
following definitions we refer to the literature on partially-
ordered topological linear spaces e.g. Birkhoff [ 2], Nachbin

[8], Namioka [9] and Schaefer [12]. (See also Vandergraft [ 20]

and Rheinboldt and vVandergraft [11].)

Definition 4: Let N be a PTL space with positive cone C and

topology T. Then
a) N is called solid if C has an interior point;

b) N is called regular if any order-bounded monotone in-

creasing sequence has a limit i.e. if whenever

-

a = a =a, n=290,1,... a converges tO some
n n+l1 ‘ e o n} g

element in N;

c) N is called normal if for any neighborhood base U of
the origin, there exists a constant o > 0 such that
for any a 2 0 in N, and any neighborhood U € U we have

{b | 0=b=a} c au.

As examples, we note that Rm is regular, solid and normal.
cl0,1] and LP[O,l] (L = p = ») are normal under their usual

orderings and topologies. Furthermore, C[0,1] and L7[0,1] are
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solid but not regular while LP[O,l] for 1 = p = » are regular

but not solid.

For PTL spaces in which T is a norm topology, it can be

shown that the space is normal if and only if there exists a

1A

constant o > 0 such that 0 = a = b implies |a|| = «|bll. we

can then introduce an equivalent monotone norm

-
o
.

0 = a = Db implies |la|l' = |bl|’.

In general, a sequence {bn} in a partially ordered linear

space N is called relatively uniformly convergent to zero if
there exists a real sequence tl E= t2 z,..2 0 with ti - 0 and

an element b = 0 in N such that

1A

(5.1) -tnb =D tb, n=20,1,... .

n n

For normal PTL spaces it may be shown that

(5.2) O

1A
j+]
JIA
o
o

=0,1,... where b - 0, implies a -~ 0
n n

and thus in a normal PTL space relative uniform convergence im-

plies topological convergence. For solid PTL spaces the con-

verse holds. Therefore, in a normal and solid PTL space topo-

logical convergence is equivalent with relative uniform convergence.
All of the seq;ential convergence conditions used by

Collatz [ 3] and Schrdder [16] are satisfied in a normal PTL

space N. The conditions of Ehrmann [4] require that N be solid
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as well, while Schmidt [14] assumed that convergence is equiva-
lent to relative uniform convergence,a condition which is
satisfied if N is both solid and normal.

Let X be an N-metric space where N is normal. If U is
a neighygfyood basergfwthe origin in*N, then for each X, €X
the sets {x € X | p(x,xo) € Ue U} form a local neighborhood
base of Xq for a uniform topology on X. Under this topology,
convergence of a sequence {xn} c X to X € X again means that
p(xn,x) - 0; we call X complete if any Cauchy sequence has
a limit in X.

As before,a continuous linear operator P:N - N is called

. . . k
nonnegative if Pa =z 0 whenever a Z 0 and convergent if E:P a

k=0
exists for all a € N. It is well-known that for convergent P,

o

®
(I—P»)-l exists and (I—P)-% = Z Pka for all a € N. Clearly'

-1 k=0 .
(1-P) is nonnegative if P is nonnegative.

On an N-metric space X a mapping F:D ¢ X - X will again be
called a P-contraction on D if there exists a continuous non-
negative convergent linear operator P:N - N such that
o (Fx,Fy) = Pp(x,y), X,y € D. If N is a normal PTL space the
contraction principle again follows from the general result of
Schroder [16].

It is easily checked that on any N-metric space X for which

N is normal, Lemma 3, Theorem 1 with the exception of (3.3),

and part (a) of Theorem 2 remain valid and the proofs hold word
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for word. In order to conclude (3.3) and hence all of the
remaining results, we need Lemma 2. In addition, Theorems 3
and 4 have used Lemma 1 while Theorems 2, 3 and 4 have used the
continuity of (I-P)-l.

For the continuity of (I-P)-'l two general results can be
cited: If N is a scolid and normal PTL space then Namicka [ 2]
has shown that every nonnegative linear operator is continuous.
On the other hand, if N is semi-metrizable and topologically
complete then the Banach-Steinhaus Theorem assures that (I—P)-l,
as the limit of continuous linear operators, is again continuous.

Next we consider the generalization of Lemma 2. If

n e
(5.1) a = E: P kbk,
k=0
then whenever P:N - N is continuous it follows as before that

an - 0 implies bn - 0. For the converse one general result is

the following: If N is a normed linear space and P:N - N a

=1 1

linear operator with spectral radius o(P) = lim sup || P

(]

then E:H P" || < «» and the previous proof of Lemma 2 holds. But

o
if we only know that P is convergent then we may have o(P) =1

<1,

and the proof breaks down. A different approach is the following:

Lemma 4: Let N be a normal PTL-space and P:N - N a nonnegative

convergent continuous linear operator. Then if bk - 0 rela-

tively uniformly, a - 0 in the topology of N.



< ik —

e TN W T -,

- 26 -

m
Proof: For some fixed m, let ¢ = Pn-m E:Pm_kbk and

n
% n-k k=o
d = P s, nzZm; thena =c¢_ + d . Since b, ~» 0 rela-
n L k n n n k
m+l
tively uniformly, there exists b = 0 in N and a real sequence

t

v

K tk+l z...Z2 0, tk - 0 such that (5.1) holds. Hence, since

P is nonnegative and convergent, —tm+l(I—P)-lb

HA

d
n

W

n z m,and given any neighborhood U of the origin, the normality
of N shows that we can choose m such that dn € Uy, n =2 m. But
since P is convergent c, ” O for any fixed m and hence a € U,
n=m i.e. a - 0.

Since in normal, solid PTL spaces, sequential topological
convergence is equivalent with relative uniform convergence it
follows from Lemma 4 that in such spaces Lemma 2 holds. Hence
in N-metric spaces for which N is normal and solid, Theorems 1
and»2 remain valid, and the proofs are the same.

Theorems 3 and 4 also required Lemma 1 in order to conclude

that Q + R was a convergent operator. One generalization of

Lemma 1 is the following:

Lemma 4: Let N be a regular PTL-space and assume that the

I

positive cone C is reproducing, i.e., C - C N. Let P:N - N

. . -1 .
be a nonnegative linear operator such that (I-P) exists and

is nonnegative. Then P is convergent.

Proof: For any b = O,
n
c_ = z b = (1-p) b.

n
k=0

-1
= tm+l(I—P) b,
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Hence the monotonically increasing sequence {cn} is order-

bounded and has a limit. For arbitrary b there exist b,,b. € C

172
such that b = bl—bz. But then Z:Pkbl and z Pkb2 converge and
hence also Z Pkb.

By itself this result is satisfactory but taken together
with the earlier assumptions of normality and solidness, the
class of spaces for which Theorems 3 and 4 apply is considerably
restricted. Of course, it is possible to add the assumption,
or to ascertain otherwise,that both the operators Q + R and
P = (I—Q)-lR are convergent; then Theorems 3 and 4 will again
be valid if N is only solid and normal.

In summary, we have given some sufficient conditions that
Lemma 1 and 2 and hence all our results of Sections 3 and 4
remain valid, although these conditions are rather stringent.

An open question remains as to what other conditions are

possible and, indeed, what are necessary conditions.
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